Publications

Pre-prints

  1. N. Bastianello, R. Carli, S. Zampieri. “Internal Model-Based Online Optimization.” arXiv
  2. N. Bastianello, L. Madden, R. Carli, E. Dall’Anese. “A Stochastic Operator Framework for Inexact Static and Online Optimization.” arXiv
  3. N. Bastianello, A. Simonetto, R. Carli. “Primal and Dual Prediction-Correction Methods for Time-Varying Convex Optimization.” arXiv

Journal articles

  1. N. Bastianello, L. Schenato, R. Carli. “A novel bound on the convergence rate of ADMM for distributed optimization.” Automatica, vol. 142, p. 110403, Aug. 2022 link
  2. A. M. Ospina, N. Bastianello, E. Dall’Anese. “Feedback-Based Optimization with Sub-Weibull Gradient Errors and Intermittent Updates.” IEEE Control Systems Letters, vol. 6, pp. 2521-2526, 2022 arXiv, link
  3. N. Bastianello, R. Carli, L. Schenato, M. Todescato. “Asynchronous Distributed Optimization over Lossy Networks via Relaxed ADMM: Stability and Linear Convergence.” IEEE Trans. Automatic Control, vol. 66, no. 6, pp. 2620-2635, Jun. 2021 arXiv, link
  4. N. Bastianello, A. Simonetto, R. Carli. “Prediction-Correction Splittings for Time-Varying Optimization with Intermittent Observations.” IEEE Control Systems Letters, vol. 4, no. 2, pp. 373-378, Apr. 2020 link
  5. A. Olama, N. Bastianello, P. Da Costa Mendes, E. Camponogara. “Relaxed Hybrid Consensus ADMM for Distributed Convex Optimization with Coupling Constraints.” IET Control Theory & Applications, vol. 13, no. 17, pp. 2828-2837, Nov. 2019 link

Conference proceedings

  1. N. Bastianello, R. Carli. “ADMM for Dynamic Average Consensus over Imperfect Networks.” IFAC Conference on Networked Systems (NecSys’22), Jul 2022, IFAC-PapersOnLine vol. 55, no. 13, pp. 228-233 link
  2. N. Bastianello, A. Simonetto, E. Dall’Anese. “OpReg-Boost: Learning to Accelerate Online Algorithms with Operator Regression.” Proceedings of The 4th Annual Learning for Dynamics and Control Conference (L4DC’22), PMLR 168, pp. 138-152 arXiv, code, link
  3. N. Bastianello. “tvopt: A Python Framework for Time-Varying Optimization.” 2021 IEEE Conference on Decision and Control (CDC’21), Dec. 2021, pp. 227-232 arXiv, code, link
  4. N. Bastianello, E. Dall’Anese. “Distributed and Inexact Proximal Gradient Method for Online Convex Optimization.” 2021 European Control Conference (ECC’21), Jun. 2021, pp. 2432-2437 arXiv, link
  5. N. Bastianello, A. Simonetto, R. Carli. “Distributed Prediction-Correction ADMM for Time-Varying Convex Optimization.” 54th Asilomar Conference on Signals, Systems and Computers, Nov. 2020, pp. 47-52 arXiv, link
  6. N. Bastianello, A. Simonetto, R. Carli. “Prediction-Correction Splittings for Nonsmooth Time-Varying Optimization.” 2019 European Control Conference (ECC’19), Jun. 2019, pp. 1963-1968 arXiv, link
  7. N. Bastianello, A. Simonetto, R. Carli. “Prediction-Correction for Nonsmooth Time-Varying Optimization via Forward-Backward Envelopes.” 2019 International Conference on Acoustics, Speech, and Signal Processing (ICASSP’19), May 2019, pp. 5581-5585 arXiv, link
  8. N. Bastianello, R. Carli, L. Schenato, M. Todescato. “A Partition-Based Implementation of the Relaxed ADMM for Distributed Convex Optimization over Lossy Networks.” 2018 IEEE Conference on Decision and Control (CDC’18), Dec. 2018, pp. 3379-3384 arXiv, link
  9. N. Bastianello, M. Todescato, R. Carli, L. Schenato. “Distributed Optimization over Lossy Networks via Relaxed Peaceman-Rachford Splitting: a Robust ADMM Approach.” 2018 European Control Conference (ECC’18), Jun. 2018, pp. 477-482 arXiv, link

PhD Thesis

  • N. Bastianello, Supervisors: R. Carli, A. Simonetto. “Operator theory for optimization and learning.” University of Padova, 2021 pdf